If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+32x=80
We move all terms to the left:
16x^2+32x-(80)=0
a = 16; b = 32; c = -80;
Δ = b2-4ac
Δ = 322-4·16·(-80)
Δ = 6144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6144}=\sqrt{1024*6}=\sqrt{1024}*\sqrt{6}=32\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-32\sqrt{6}}{2*16}=\frac{-32-32\sqrt{6}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+32\sqrt{6}}{2*16}=\frac{-32+32\sqrt{6}}{32} $
| -19x+11+12x-2=74 | | -6.8+7.4=b | | 6x-8x-10=-2x+3-10 | | 4x-4+33=5x-1+9x | | c/2+3=1- | | 121*8=x | | 7(y+2)=9y+24 | | 20x-40=21x-40 | | 3z/8+6=1 | | 112+12m=316 | | 6(x+3)-4=3x+3(4+x) | | 10x+10=-60 | | -14=-2/3w | | 9w+12=39 | | 5.25a-2(3a+1.25)=a+11 | | 1/4^(x-1)=4096 | | 3/7n=7 | | 203,000^2=x(83000x) | | 29n-126=280 | | -y+3=-18 | | 203,000^2=83,000(83,000x) | | 18 – 4a = 2 | | −t/4=−3(3.14) | | 80+8m=192 | | 4(x−6)=7x+8 | | 5(6+2x)=-10 | | ((24x-72)-(5x-15))/((x-3)(4x-12))=-10 | | (k-1)(-2k)=-2 | | x^2+16.8x=1908.206 | | 6x+5=5+3x+19 | | 2÷(x-2)=3÷(x+5)+10÷(x+5)(x-2) | | A^2+17a+270=0 |